Teacher notes
 Topic A

An instructive problem in rotational motion

A point particle of mass m starts from rest at a height h from the ground. It enters a loop-the-loop machine of radius R.

(a) Show that the particle does not fall off the track if $h>\frac{5}{2} R$.

The particle is replaced by a marble of mass m and radius r. The moment of inertia of the marble is $\frac{2}{5} m r^{2}$. The marble rolls without slipping.
(b) Show that the marble does not fall off the track if $h>\frac{27}{10} R$.
(c) The marble is released from rest at a height $h=3 R$. The marble enters the loop. Determine the magnitude of the horizontal force acting on the marble when at a height R from the ground.

Solution
(a) The speed at the top of the loop is found from $m g h=\frac{1}{2} m v^{2}+m g(2 R)$ i.e. $v^{2}=2 g h-4 g R$. The net force at the top is $N+m g$ and so $N+m g=m \frac{2 g h-4 g R}{R}$. This gives

IB Physics: K.A. Tsokos

$N=m \frac{2 g h-4 g R}{R}-m g=m\left(\frac{2 g h}{R}-5 g\right)=m g\left(\frac{2 h-5 R}{R}\right)$. The particle will not fall off the loop if $N>0$ i.e. if $h>\frac{5}{2} R$.
(b) Now, $m g h=\frac{1}{2} m v^{2}+\frac{1}{2} \frac{2}{5} m r^{2} \omega^{2}+m g(2 R)$ and since $v=\omega r, m g h=\frac{1}{2} m v^{2}+\frac{1}{2} \frac{2}{5} m v^{2}+m g(2 R)$, giving $g h=\frac{7}{10} v^{2}+g(2 R)$, i.e. $v^{2}=\frac{10 g h-20 g R}{7}$.Then $N+m g=m \frac{10 g h-20 g R}{7 R}$ and so $N=m \frac{10 g h}{7 R}-\frac{20}{7} m g-m g=m g\left(\frac{10 h-27 R}{7 R}\right)$. The marble will not fall off the loop if $N>0$ i.e. if $h>\frac{27}{10} R$.
(c) Now, $m g h=\frac{1}{2} m v^{2}+\frac{1}{2} \frac{2}{5} m r^{2} \omega^{2}+m g R$ and since $v=\omega r, m g h=\frac{1}{2} m v^{2}+\frac{1}{2} \frac{2}{5} m v^{2}+m g R$, giving $g h=\frac{7}{10} v^{2}+g R$, i.e. $v^{2}=\frac{10 g h-10 g R}{7}=\frac{30 g R-10 g R}{7}=\frac{20 g R}{7}$.

The horizontal force is just $\frac{m v^{2}}{R}=m \frac{\frac{20 g R}{7}}{R}=\frac{20}{7} m g$.

